Highly Selective Visual Detection of Cu(II) Utilizing Intramolecular Hydrogen Bond-Stabilized Merocyanine in Aqueous Buffer Solution

Zhao-Qi Guo,†,‡ Wei-Qiang Chen,*,† and Xuan-Ming Duan*,†

*Laboratory of Organic NanoPhotonics and Key Laboratory of Photochemical Con*V*ersion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 2, Zhongguancunbeiyitiao, Haidian District, Beijing 100190, China*

chenwq7315@mail.ipc.ac.cn; xmduan@mail.ipc.ac.cn

Received March 1, 2010

ABSTRACT

A Cu2+**-specific colorimetric sensor 1, which is stabilized by an intramolecular hydrogen bonding, was designed and developed. The color of 1** changes from purple to blue on addition of 1.0 μ M Cu²⁺ in aqueous buffer solution, which can be detected by the naked eye. The analytical detection limit for Cu²⁺ by the naked eye is as low as 1.0 μ M. The stoichiometry for 1 and Cu²⁺ in complex is 2:1 in aqueous solution.

The development of highly selective sensors for metal ions is particularly important, since metal ions can have detrimental effects on humans and the environment.¹ Copper is the third most abundant essential trace element in the human body and is commonly found as Cu^{2+} in natural water.² However, free Cu^{2+} is potentially very toxic to aquatic life, both acutely and chronically. For example, microorganisms are affected by even submicromolar concentrations of Cu^{2+} .³ Excessive uptake of copper causes liver or kidney damage.⁴ Several analytical methods⁵ and a number of probes^{6,7} have

been developed for sensitive, selective, and accurate detection of Cu^{2+} . Colorimetric methods, in particular, are extremely attractive because they can be easily read with the naked eye. Most of the reported colorimetric sensors⁷ for Cu^{2+} are used in mixed solvent (water/organic solvent), but only a

[†] Technical Institute of Physics and Chemistry.

[‡] Graduate School of Chinese Academy of Sciences.

⁽¹⁾ Lee, S.; Choi, I.; Hong, S.; Yang, Y. I.; Lee, J.; Kang, T.; Yi, J. *Chem. Commun.* **2009**, *41*, 6171.

^{(2) (}a) Gaggelli, E.; Kozlowski, H.; Valensin, D.; Valensin, G. *Chem. Re*V*.* **²⁰⁰⁶**, *¹⁰⁶*, 1995. (b) Uauy, R.; Olivares, M.; Gonzalez, M. *Am. J. Clin. Nutr.* **1998**, *67*, 952S.

⁽³⁾ Kramer, R. *Angew. Chem., Int. Ed.* **1998**, *37*, 772.

⁽⁴⁾ Georgopoulos, P. G.; Roy, A.; Yonone-Lioy, M. J.; Opiekun, R. E.; Lioy, P. J. *J. Toxicol. Environ. Health, Part B* 2001, 4, 341.

^{(5) (}a) Zheng, Y. J.; Orbulescu, J.; Ji, X. J.; Andreopoulos, F. M.; Pham, S. M.; Leblanc, R. M. *J. Am. Chem. Soc.* **2003**, *125*, 2680. (b) Ocypa, M.; Michalska, A.; Maksymiuk, K. *Electrochim. Acta* **2006**, 2298. (c) Mashhadizadeh, M. H.; Zadmehr, M. R.; Allah-Abadi, H. *Asian J. Chem.* **2006**, *18*, 137. (d) Yang, K. X.; Swami, K.; Husain, L. *Spectrochim. Acta, Part B* **2002**, *57*, 73.

^{(6) (}a) Shao, N.; Zhang, Y.; Cheung, S. M.; Yang, R. H.; Chan, W. H.; Mo, T.; Li, K. A.; Liu, F. *Anal. Chem.* **2005**, *77*, 7294. (b) Yu, M. X.; Shi, M.; Chen, Z. G.; Li, F. Y.; Li, X. X.; Gao, Y. H.; Xu, J.; Yang, H.; Zhou, Z. G.; Yi, T.; Huang, C. H. *Chem.*^{-*Eur. J.* **2008**, *14*, 6892. (c) Domaille,} D. W.; Que, E. L.; Chang, C. J. *Nat. Chem. Biology* **2008**, *4*, 168. (d) Swamy, K. M. K.; Ko, S. K.; Kwon, S. K.; Lee, H. N.; Mao, C.; Kim, J. M.; Lee, K. H.; Kim, J.; Shin, I.; Yoon, J. *Chem. Commun.* **2008**, 5915. (e) Jung, H. S.; Kwon, P. S.; Lee, J. W.; Kim, J. I.; Hong, C. S.; Kim, J. W.; Yan, S. H.; Lee, J. Y.; Lee, J. H.; Joo, T.; Kim, J. S. *J. Am. Chem. Soc.* **2009**, *131*, 2008. (f) Zhou, Y.; Wang, F.; Kim, Y.; Kim, S. J.; Yoon, J. *Org. Lett.* **2009**, *11*, 4442.

few of them are used in neat aqueous solution.^{7f} Consequently, the development of nake-eyed sensors for Cu^{2+} in neat aqueous solution has the important feature that they can be used to evaluate the analyte concentration rapidly.

The conversion of spiropyran to merocyanine⁸ was used for metal ion sensing by phenolate oxygen in the merocyanine via cooperative ligation of other chelating functionality attached at the 8-position or N-position (Scheme 1). $6a,7g,9$ However, the use of organic solvents and light-black protection in the measurement limits their application. Therefore, thermo-/photostable merocyanine from spiropyran is desirable. Herein, we introduce naphthalen-1,8-diol moiety into spiropyran **1a**, which is likely to convert to merocyanine

Scheme 1. Chemical Structure of the Spironaphthanopyran **1** and the Interconversion of Spiropyran to Merocyanine

1b due to the formation of a six-membered-ring intramolecular hydrogen bond between hydroxyl group and carbonyl (or naphthanolate) group (Scheme 1). The formed hydrogen bonding will stabilize the zwitterion form **1c** and increase its solubility in polar solvent. Furthermore, the hydroxyl group together with naphthanolate could bind to the metal ion and act as a sensor. In this context, we present the synthesis and the spectroscopic evaluation of colorimetric chemosensor **1**, which is developed for the highly selective visual detection of Cu^{2+} in aqueous buffer solution.

Theoretical calculations are performed to evaluate the sum of electronic and zero-point energies of spiro-form **1a** and mero-form **1b** on the isolated gas phase by using the Gaussian 03 program $(b3lyp/6-31+G(d,p))$.¹⁰ The result shows the energy of mero-form **1b** is 18.4 kcal/mol lower than that of spiro-form **1a**. This demonstrates **1** exists mainly in mero-form **1b** in the equilibrium and is in accordance with our design. Compound **1** can be obtained by condensation of 1,8-dihydroxy-2-naphthaldehyde **9** with 1,2,3,3-tetramethyl-3*H*-indolium iodide in ethanol (shown in Scheme 2).⁸

Compound **9** was obtained in three steps starting from commercially available naphthalen-1,8-diol **3**. ¹¹ In the same procedure, compound **2**, without an additional chelating hydroxyl group, was also synthesized in control. The detailed experimental procedures can be found in the Supporting Information.

Compound **1** exists mainly as merocyanine in solution. In its ¹H NMR spectrum in CDCl₃, a singlet at 14.58 ppm is assigned to the proton of the hydroxyl group involved in a strong intramolecular hydrogen bonding; two doublets (6.18 and 8.66 ppm) with a coupling constant of 14.2 Hz are assigned to the protons of *trans*-CH=CH bond and a singlet at 3.48 ppm is assigned to the proton of $N-CH_3$. In contrast, compound **2** exists as the spiro-form in chloroform due to chemical shifts at 2.73 ppm for $N-CH_3$ and a coupling constant of 10.2 Hz for *cis*-CH=CH. The results demonstrate the intramolecular hydrogen bonding in molecule **1** makes the equilibrium shift to merocyanine and stabilizes the merocyanine. About 20% intramolecular proton tranfer tautormer existing in CDCl₃ and CD₃CN vanished when CD_3OD and $DMSO-d_6$ were used as solvent (Figure 1). When an equivalent of $Cu(OAc)_2$ was added to a solution of 1 in DMSO- d_6 , the naphtholate together with hydroxy group bind to Cu^{2+} , which results in the peaks broadening and shifting in the ¹H NMR spectrum.

The intramolecular hydrogen bond-stabilized merocyanine exhibits a strong absorption band in the range of 500-⁶⁵⁰ nm in selected solvents. (Figure 2). The absorption maximium of **1** in methanol appears at 603 nm with a extinction coefficient (*ε*) of 7.4×10^4 M⁻¹ cm⁻¹, which is assigned to (7) Recent references: (a) Zhao, Y.; Zhang, X. B.; Han, Z. X.; Qiao, L.;
C. Y.; Jian J. Y.; Shan G. J.; V.y. B. O. Angl. Charg, 2000, 81, 7022.

Li, C. Y.; Jian, L. X.; Shen, G. L.; Yu, R. Q. *Anal. Chem.* **2009**, *81*, 7022. (b) Huang, J.; Xu, Y.; Qian, X. *Dalton. Trans.* **2009**, 1761. (c) Chen, X. Q.; Jou, M. J.; Lee, H.; Kou, S. Z.; Lim, J.; Nam, S. W.; Park, S.; Kim, K. M.; Yoon, J. *Sens. Actuators, B* **2009**, *137*, 597. (d) Rodriguez-Morgade, M. S.; Planells, M.; Torres, T.; Ballester, P.; Palomares, E. *J. Mater. Chem.* **2008**, *18*, 176. (e) Martinez, R.; Zapata, F.; Caballero, A.; Espinosa, A.; Tarraga, A.; Molina, P. *Org. Lett.* **2006**, *8*, 3235. (f) Gunnlaugsson, T.; Leonard, J. P.; Murray, N. S. *Org. Lett.* **2004**, *6*, 1557. (g) Shao, N.; Jin, J. Y.; Wang, H.; Zhang, Y.; Yang, R. H.; Chan, W. H. *Anal. Chem.* **2008**, *80*, 3466. (h) Moletti, A.; Coluccini, C.; Pasini, D.; Taglietti, A. *Dalton. Trans.* **2007**, 1588. (i) Sheng, R. L.; Wang, P. F.; Gao, Y. H.; Wu, Y.; Liu, W. M.; Ma, J. J.; Li, H. P.; Wu, S. K. *Org. Lett.* **2008**, *10*, 5015. (j) Xiang, Y.; Li, M.; Chen, X. T.; Tong, A. J. *Talanta* **2008**, *74*, 1148. (k) Mashraqui, S. H.; Khan, T.; Sundaram, S.; Ghadigaonkar, S. *Tetrahedron Lett.* **2008**, *49*, 3739. (l) Kim, M. H.; Noh, J. H.; Kim, S.; Ahn, S.; Chang, S. K. *Dyes Pigm.* **2009**, *82*, 341.

⁽⁸⁾ Minkin, V. I. *Chem. Re*V*.* **²⁰⁰⁴**, *¹⁰⁴*, 2751.

^{(9) (}a) Phillips, J.; Mueller, A.; Przystal, F. *J. Am. Chem. Soc.* **1965**, *87*, 4020. (b) Taylor, L. D.; Nicholson, J.; Davis, R. B. *Tetrahedron Lett.* **1967**, *8*, 1585. (c) Chibisov, A. K.; Gorner, H. *Chem. Phys.* **1998**, *237*, 425. (d) Winkler, J. D.; Bowen, C. M.; Michelet, V. *J. Am. Chem. Soc.* **1998**, *120*, 3237. (e) Collins, G. E.; Choi, L. S.; Ewing, K. J.; Michelet, V.; Bowen, C. M.; Winkler, J. D. *Chem. Commun.* **1999**, 321. (f) Nishikiori, H.; Sasai, R.; Arai, N.; Arai, N.; Takagi, K. *Chem. Lett.* **2000**, 1142. (g) Wojtyk, J. T. C.; Kazmaier, P. M.; Buncel, E. *Chem. Mater.* **2001**, *13*, 2547. (h) Leaustic, A.; Dupont, A.; Yu, P.; Clement, R. *New J. Chem.* **2001**, *25*, 1297. (i) Kopelman, R. A.; Snyder, S. M.; Frank, N. L. *J. Am. Chem. Soc.* **2003**, *125*, 13684.

⁽¹⁰⁾ Frisch, M. J.; et al. *Gaussian 03*, Revision E.01; Gaussian, Inc., Wallingford, CT, 2004.

^{(11) (}a) Glaser, T.; Liratzis, I.; Frohlich, R. *Dalton Trans.* **2005**, 2892. (b) Glaser, T.; Liratzis, I. *Synlett* **2004**, 735.

Figure 1. ¹H NMR spectra of 1 in selected solvent in the range of 6.0-8.8 ppm: (a) CDCl₃; (b) CD₃CN; (c) CD₃OD; (d) DMSO- d_6 ; and (e) DMSO- d_6 with 1.0 equiv of Cu(OAc)₂

the ground state. The absorption maximium shifts to 548 nm with $\varepsilon = 3.1 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$ in phosphate-buffered saline (PBS, pH 9.18) solution, and 547 nm with $\varepsilon = 5.1 \times$ 10^4 M⁻¹ cm⁻¹ in hexane. In contrast, there was no absorption at 500-650 nm for **²** in hexane, but the absorption intensity of the band increased as the solvent polarity increased (Figure S1, Supporting Information). The results indicate compound **¹** shows strong solvatochromism due to the solute-solvent interaction, and for compound **2**, solvatochromism was governed by the shift of the equilibrium.8

The metal ions binding properties and selectivity of compound **1** were first investigated in methanol solutions with use of metal acetate salts. Chemosensor **1** response to Cu^{2+} , Fe²⁺, and Fe³⁺ lead to absorption variation (Figure S2, Supporting Information). The absorption peak at 565 nm vanished for **1** in methanol gradually with the addition of Cu^{2+} , while a new absorption band appeared at 636 nm. The color of the solution changed from blue to cyan (Figure S3, Supporting Information). The stoichiometry for 1 and Cu^{2+} is 1:1 in methanol determined by a Job's plot¹² (Figure S4, Supporting Information). Ascribed to the equilibrium, **1c** existing in methanol, two oxygen atoms were both partially negatively charged and easily chelated to Cu^{2+} .

Figure 2. Absorption spectra of 1 (10 μ M) in selected solvents.

The selective interaction of sensor 1 with Cu^{2+} in methanol encourage us to further investigate its binding property in aqueous solution. Fortuanately, compound **1** can be dissolved in basic solution due to the probable deprotonation. The changes in the absorption spectra of 1 upon addition of Cu^{2+} in PBS solution (pH 9.18) are shown in Figure 3a. The

Figure 3. (a) Absorption spectra of $1(10 \mu M)$ in pH 9.18 PBS buffer solution in the presence of different concentrations of Cu^{2+} . Inset: The absorption change of **1** at 670 nm upon the initial concentration of $\lbrack Cu^{2+} \rbrack$. (b) Job's plot for determing the stoichiometry for 1 and Cu^{2+} in PBS buffer solution. Total concentration $= 1.0 \times 10^{-5}$ mol/L.

intensity of the absorption maximium at 548 nm was gradually reduced with the addition of Cu^{2+} , while a new absorption band appeared at 670 nm with a red shift of 122 nm. The absorption change at 670 nm gradually increased with the concentration of Cu^{2+} increasing (inset in Figure 3a). The analytical detection limit of Cu^{2+} by the naked eye is as low as 1.0×10^{-6} M. The association constant is (1.0) \pm 0.15) \times 10¹⁰ M⁻² (Supporting Information). The stoichiometry of Cu^{2+} and 1 is 1:2 determined by a Job's plot (Figure 3b). 12

Furthermore, we investigated the metal ions binding property and selectivity of compound **1** in PBS solutions (pH 9.18). Figure 4a (the black bar portion) illustated the absorption resopnse of 1 to metal ions Na^+ , K^+ , Ag^+ , Mg^{2+} , Cu^{2+} , Ca^{2+} , Cd^{2+} , Co^{2+} , Hg^{2+} , Ni^{2+} , Pb^{2+} , Zn^{2+} , Fe^{2+} , and $Fe³⁺$ in aqueous solution. No significant absorption changes were observed with common interferences, the purple color of **1** showed no change when other metal ions were added

⁽¹²⁾ Job, P. *Ann. Chim.* **1928**, *9*, 113.

Figure 4. (a) Absorption responses of 1 (10 μ M) to 10 μ M Cu²⁺ or 50 *µ*M other metal ions (the black bar portion) and to the mixture 50 μ M other metal ions with 10 μ M Cu²⁺ (the shaded bar portion). (b) Photograph of sensor **1** containing 50 *µ*M metal ions in PBS buffer solutions.

except for Cu^{2+} . However, with the addition of 1 equiv of Cu^{2+} , the color changed from purple to blue (Figure 4b). These results indicated that our proposed sensor exhibited high selectivity to Cu^{2+} over other metal ions. In river water and seawater, the concentrations of some other contaminating metal ions, such as Zn^{2+} , Ni²⁺, and Pb²⁺, are significantly higher than that of Cu^{2+} ; selective detection of Cu^{2+} in the presence of these metal ions with high concentration is a challenge to the application of most common sensors. To test the practical applicability of our visual chemosensor for $Cu²⁺$, competition experiments were also carried out. Five times the concentration of the above-mentioned metal ions (50 μ M) was added to 10 μ M 1 followed by addition of Cu^{2+} (10 μ M). The results are also shown in Figure 4a (the shaded bar portion). Our sensor showed a small change response to Cu^{2+} with or without addition of other interfering metal ions. These experimental results showed that the response of the sensor to Cu^{2+} is little affected by the presence of the other possible contaminating metal ions.

In conclusion, a highly sensitive and selective merocyanine-based colorimetric chemosensor **1** was developed for the detection of Cu^{2+} in PBS solution (pH 9.18). The recognition of Cu^{2+} gave rise to color changes from purple to blue that were clearly visible to the naked eye. Such Cu^{2+} selective colorimetric chemosensors could meet the sensitive and selective requirements for biomedical and environmental application and be of great importance for real-time and instrument free detection.

Acknowledgment. This research was supported by the National Natural Science Foundation of China (Grant Nos. 50773091 and 20702056) and the National Basic Research Program of China (2010CB934103).

Note Added after ASAP Publication. In the version published ASAP April 19, 2010 two doublet values were incorrect in the paragraph describing Figure 1; the correct version published on the web May 14, 2010.

Supporting Information Available: Experimental procedures and characterization data of compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL100381G